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1. We can sketch out a right triangle with one angle x/2, the opposite leg u, and the adjacent leg 1, allowing for a

tangent of u. Then the length of the hypotenuse is
√

1 + u2, so sin(x/2) = u√
1+u2

and cos(x/2) = 1√
1+u2

. Using

double-angle formulas, sin(x) = 2 sin(x/2) cos(x/2) = 2u
1+u2 and cos(x) = cos2(x/2) − sin2(x/2) = 1−u2

1+u2 . Finally,

du
dx = 1

2 sec2(x/2), so dx
du = 2 cos2(x/2) = 2

1+u2 . Combining them we get (1−u2)−2+2u
1+u2 which simplifies to

−(u− 1)2

u2 + 1

2. First we find the intersections of the two functions at x4n+1 = x4n+3, meaning x = 0 or x2 = 1→ x = −1, 1. Since

these functions are odd due to the odd powers, if one is above the other for positive x values, it will be below for

negative x values. Thus, if we integrate from -1 to 1 we will get an answer of 0, so instead we must integrate from

0 to 1 and double the area. An = 2

∫ 1

0

(x4n+1 − x4n+3)dx =
2

4n+ 2
− 2

4n+ 4
. Thus the sum of all An from n = 0

to infinity is 2( 1
2 −

1
4 + 1

6 −
1
8 . . . ) = 1

1 −
1
2 + 1

3 −
1
4 · · · = ln 2 using a well-known result, which can be derived by

evaluating the Taylor series for ln(1 + x) at x = 1.

3. Tanvi’s tangent is the tangent to y = tan(x) at x = a. The slope is sec2 a and the point (a, tan(a)) is on the line,

so we can use point-slope form, giving the line y − tan(a) = sec2 a(x− a). Since everything is symmetric about the

y-axis, the two tangent lines intersect on the y-axis, so the y-coordinate of intersection is equal to the y-intercept

of the line. Plugging in x = 0 and y = −a, we get −a = tan(a)− a sec2 a, a sec2 a− a = tan(a), and using the trig

identity sec2 a − 1 = tan2 a we find that a tan2 a = tan(a). Since tan(a) 6= 0, we can divide to find a tan(a) = 1.

There is no way to find the actual value of a from this, but it doesn’t matter! The triangle with vertices at Tanusri,

Tanvi, and the origin has base 2a and height tan(a), so its area is a tan(a) = 1 .

4. According to half-angle formula, cos(x/2) =
√

1+cos(x)
2 , so 2 cos(x/2) =

√
2 + 2 cos(x) and thus f(x) = 10 cos(x/2).

We can factor out the 10 and multiply it back in later. As always with sine and cosine, the sequence of derivatives

will cycle through cos(x),− sin(x),− cos(x), sin(x), cos(x) . . . . By chain rule, each derivative will also multiply the

function by 1/2. Thus we can decompose the series into two infinite geometric series - one for cosine and one for

sine. The cosine series goes cos(x/2), (−1/4) cos(x/2), (1/16) cos(x/2) . . . , so it has a common ratio of −1/4. Using

the normal a/(1 − r) geometric series formula and the fact that cos(π/6) =
√

3/2, the sum of the cosine series is

2
√
3

5 . The sine series is almost exactly the same, except we must note that it starts with (−1/2) sin(x/2) and that

sin(π/6) = 1/2, giving a sum of − 1
5 . Combining these two and multiplying by 10, we get S = 4

√
3− 2 .

5. We know that when x = 0, xa = 0 and ax = 1. We also know that as x grows to infinity, ax will grow faster than

xa. Thus, in the first quadrant ax ”starts” and ”ends” above xa. However, we know that the two must intersect at

at least one point: the trivial case x = a. The fewest first-quadrant intersections possible should then be exactly 1.

For the two curves to intersect only once, with ax always greater than or equal to xa, they must be tangent at their

point of intersection. If they were not tangent, they would have different slopes, and thus would cross, meaning

they would intersect at another point as well. So, this boils down to finding the value of a for which f(x) = xa
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and g(x) = ax are tangent at x = a. f ′(x) = axa−1 so f ′(a) = aa. g′(x) = ax ln(a) so g′(a) = aa ln(a). Therefore

aa = aa ln(a) so ln(a) = 1 and a = e ≈ 2.72. b10ec ≈ b27.2c = 27, and the sum of the digits is 9 .

6. For any positive x, arctan(x) will be between 0 and π/2, so in tan(arctan(x)), arctangent produces a positive angle

and tangent finds the tangent of that angle - in other words, it cancels out to become x. Thus the integral of the

first function is just (1/2)x2 = 9π2

8 It’s tempting to think the same will be true for arctan(tan(x)), but we must

remember traditional ranges! Since arctangent can only produce angles between −π/2 and π/2, if x > π/2 then

arctan(tan(x)) = arctan(tan(x − π) = x − π. Thus the second function is piecewise with y = x from 0 to π/2 and

y = x − π from π/2 to 3π/2. Integrating both or just sketching the triangles gives an area of π2

8 . The difference

between the two is π2 .

7. The slope of the tangent line to the curve at (a,
√

3− a) is y′ = − 1
2
√
3−a . The slope of the normal line is then

m = 2
√

3− a. Using point-slope form, the equation of the line is y −
√

3− a = 2
√

3− a(x − a), so the y-

intercept occurs where x = 0: y = (1 − 2a)
√

3− a. To minimize the y-intercept, we take the derivative: y′ =

−2
√

3− a+ 2a−1
2
√
3−a = 6a−13

2
√
3−a . The derivative switches from negative to positive at only one point, a = 13/6, so this

must be the x-coordinate of a relative minimum. The corresponding y-intercept is then (1−13/3)
√

5/6 =
−5
√

30

9

8. First we solve for c in the MVT for derivatives. The derivative at c is nacn−1, and the average rate of change across

the interval is
abn − 0

b− 0
= abn−1. Simplifying, cD =

b

n1/(n−1)
.

In MVT for integrals,

∫ b

0

axndx =
abn+1

n+ 1
. This means the average value on the interval is abn/(n + 1), which is

equal to acn - solving, we get cI =
b

(n+ 1)1/n
.

The ratio cI/cD is thus equal to
n1/(n−1)

(n+ 1)1/n
. However, as n approaches infinity, n− 1 = n = n+ 1, so the fraction

simplifies to
n1/n

n1/n
= 1 .

9. Completing the square shows that the curve is (x − 5)2 + (y − 6)2 = 4, a circle centered at (5, 6) with radius 2.

The line of Shrung’s slice passes through (5, 6) because 16− 2(5) = 6, so it cuts along a diameter of the circle. By

symmetry, the midpoint of the two semicircle centroids must be the center of the original circle, so (x1 + x2)/2 = 5

and (y1 + y2)/2 = 6. This gives us the sum of the coordinates, but for the last portion of the answer we must

find the distance between them, which by symmetry is twice the distance from each centroid to the diameter.

To find the distance from each centroid to the line, we essentially must find the distance from the centroid of a

semicircle with radius R to its diameter. We can do this using integration. If we assume that the diameter of

the semicircle lies on the y-axis and that the figure lies to the right of the y-axis, the COM calculation becomes
1

A

∫ R

0

xydx =
2

πR2

∫ R

0

2x
√
R2 − x2dx. Using a standard u-substitution of u = R2−x2, we compute the integral as

2

πR2

∫ R2

0

√
udu =

2

πR2
· 2

3
(R3) =

4R

3π
. Plugging in R = 2, we find that the COM is 8/3π from the diameter, so the
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total distance between the two COMs is 16/3π. Multiplying by 6π and adding to the rest we get 32+10+12 = 54 .

10. Using self-similarity, this simplifies to y = exy. Then taking the natural log of both sides we rearrange to get

x = ln y
y . The maximum value of x occurs when the derivative of the right side is 0: x′ = 1−ln(y)

y2 . When y < e, the

derivative is positive, and when y > e, the derivative is negative, so when y = e then x is maximized. At y = e the

corresponding value of x is then
1

e
.

11. This volume is easiest to see by recognizing that x = ln y
y is the inverse function of y = ln x

x . Therefore the region

bound by the original and the y-axis is equal to the region bound by the inverse and the x-axis (they are symmetric

across y = x). So we can just use disk method to find the volume when y = ln x
x is revolved around the x-axis.

Sketching the curve, we see that it crosses the x-axis at x = 1 then asymptotes to 0 as x goes to infinity. Then

the integral is π
∫∞
1

(ln x)2

x2 dx. To solve the integral, we can substitute u = lnx which gives I =
∫∞
0
u2e−udu. Using

integration by parts once, we find that I = −u2e−u + 2
∫
ue−udu. Then using it again on the remaining integral,

we get I = −u2e−u + 2(−ue−u − e−u). Plugging in the bounds, we find that I = (0)− (−2) = 2. Lastly, remember

that the actual volume is Iπ = 2π .

12. A real number is equal to the sum of the greatest integer less than it and the decimal part of the number -

x = bxc+{x}. So the integrand expands to bxc
√
{x}+{x}3/2. The floor portion can be converted to a summation:

15
(∑19

i=0 i
)(∫ 1

0

√
xdx

)
= 15 (19)(20)

2 (2/3) = 1900 using the formula for sum of integers from 1 to n. The other

portion is 15
∫ 20

0
{x}3/2dx = 300

∫ 1

0
x3/2dx = 120(15/2) = 120. Adding them together we get 2020 .

13. Given a starting value x0, Newton’s method progresses by finding the x-intercept of the tangent line to f(x) at

x0. The equation of the line is y − f(x0) = f ′(x0)(x − x0) so the x-intercept occurs when y = 0: −f(x0) =

f ′(x0)(x1 − x0) → x1 = x0 −
f(x0)

f ′(x0)
. Then, since we know f(x0) = (x0)2021 and f ′(x0) = 2021(x0)2020,

x1 = x0 − 1
2021x0 = x0(1 − 1

2021 ). By the same logic, x2 = x1(1 − 1
2021 ), x3 = x2(1 − 1

2021 ), and so on (a geo-

metric relation). Thus xi = x0(1− 1
2021 )i, so x2021 = x0(1− 1

2021 )2021. However, we see that this is nearly equivalent

to x0 · limx→∞(1− 1
x )x = x0( 1

e ). Since 2021 is such a large exponent, and we are only looking for the nearest integer,

this is a reasonable approximation, leading to x2021 ≈ 136/e ≈ 136/(2.72) = 50 . Using a calculator we can confirm

that the actual answer is about 50.02, so the approximation was reasonable.

14. The first antiderivative of f(x) = x is (1/2)x2 + C, the second antiderivative is (1/6)x3 + Cx + D, and so on - in

general, the nth antiderivative is 1
(n+1)!x

n+1 + P (x), where P is some polynomial of degree n− 1. Thus the 2021st

antiderivative is g(x) = 1
2022!x

2022 + Cx2020 + Dx2019 + . . . . Letting the roots be r1, r2, and so on, we know that

(r1 + r2 + · · ·+ r2022)(r1 + r2 + · · ·+ r2022) = (r21 + r22 + · · ·+ r22022) + 2(r1r2 + r1r3 + · · ·+ r2021r2022), so the sum of

the squares of the roots is equal to the sum of the roots squared, minus twice the sum of the roots taken two at a

time. Using Vieta’s rules, we can see that the sum of the roots is 0 because the x2021 term has a coefficient of 0, but

the sum two-at-a-time is C(2022!). To find C, we take the 2020-th derivative to get 1
2x

2 + 2020!(C). If 1 is a root

of this polynomial, then C = − 1
2(2020!) . Multiplying this by 2022!, we see that the sum of the roots two-at-a-time is
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−1011(2021), so the sum of the squares is 0 − 2(−1011(2021)) = 2022(2021) = 20212 + 2021 = 4084441 + 2021 =

4086462 .

15. The trick to this limit is swapping the 1/x variable with the x, which we can see is necessary because almost all

the variables are 1/x. If we let h = 1/x, then the new limit is lim
h→0

1

h
((h2 + 4h+ 4)(2 + h)h − 4). Recognizing that

h2 + 4h+ 4 = (h+ 2)2, we get lim
h→0

1

h
((2 + h)2+h − 4).

This seems remarkably close to the limit definition of the derivative, and if we replace 4 with 22 we see that this is

just the derivative of f(x) = xx evaluated at x = 2. To find the derivative of y = xx, we take the natural log of both

sides for ln(y) = x ln(x), then take the derivative of both sides for y′

y = ln(x)+1. So y′ = y(ln(x)+1) = xx(ln(x)+1).

Evaluating this at x = 2 gives 4 ln(2) + 4 . If you want, you can even test it by plugging a large number like 1000

into the original function - the limit does indeed converge to 4 + 4 ln 2!

16. An infinitesimal percent change in Q can be written mathematically as 100dQQ where dQ is an infinitesimal absolute

change in Q. Then, by the definition of price elasticity, E = dQ/Q
dP/P = (P/Q)dQdP . In the problem, dQ

dP = −1/4, the

reciprocal of the derivative at 1, and Q = 1 while P = 5− 2(12) = 3, meaning E = −0.75 . This value can also be

found by approximating with a small value of dQ.

17. If (P/Q)dQdP = −2 for all Q, then we can rearrange to get the differential equation dQ
dP = −2Q/P . Then, using

separation of variables we get 1
QdQ = − 2

P dP , and we can then integrate on both sides to get lnQ = −2 lnP +C →

Q = A
P 2 for some value of A. We don’t actually have to find A - all we need to know is that Q0 = A/(P0)2, and

that P1 = 2
3P0, so Q1 = 9

4Q0 = 45 .

18. Let the amplitude of Eric’s sinusoidal motion, 21, be labelled A. The distance between Eric and Nitish is simply

D(x) =
√
x2 +A2 sin2(x)). If D(x) is always increasing as Eric’s x increases, we just need to find the value of

x above which D′(x) is always positive. D′(x) =
2x+ 2A2 sin(x) cos(x)

2D(x)
. The denominator is always positive,

so we are looking for the x value where the numerator switches from positive to negative. This requires solving

2x + A2 sin(2x) = 0 or A2 sin(2x) = −2x. This is impossible to solve analytically, but instead we can consider the

two graphs. Letting 2x = u for now, the graph of A2 sin(u) is a sine wave of amplitude A2, while −u is a line

with slope -1. We don’t know exactly where they intersect, but we do know that once u > A2, they will never

intersect again, because u has left the region in which A2 sin(u) is bounded. Additionally, tracing the two functions

we see that as long as u < A2, the two intersect at least once every period, so the actual final intersection could be

anywhere between A2 − 2π and A2. But this is the range for u - for x = u/2, the value can fall anywhere between

A2/2 − π and A2/2. Plugging in A = 21, we see that this is a range from 220.5 − π to 220.5. As a result, even

though we do not know the exact value of x0, to the nearest multiple of 10 it must be 220 . Graphing on Desmos

shows that this analysis is correct, as 441 sin(2x)− 2x last crosses the x-axis at about x = 217.6, just within the π

margin.

19. Let the equilateral triangle have vertices A, B, and C, where Vishnav is currently at A and D is the midpoint

of BC. By symmetry, we can completely ignore AC and just focus on A, B, and D. Vishnav’s motion can be

decomposed into two different parts: running along side AB, and swimming to point D (due to the stipulation in
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the problem, he cannot run along AB, swim to a point on BD, and then run to D). Lets say Vishnav stops running

and starts swimming at a point E along AB. Let the distance EB be x. Then we can calculate the distance Vishnav

runs as 4 − x, and the distance he swims, by Law of Cosines, as
√
x2 + 22 − 2(2)(x)(1/2) =

√
x2 − 2x+ 4. The

total time that Vishnav takes to get to the car is then T (x) = (4 − x)/
√

2 + (
√
x2 − 2x+ 4)/1. We can find the

minimum through T ′(x) = −
√

2/2 + (x − 1)/
√
x2 − 2x+ 4 = 0 → 2x − 2 =

√
2x2 − 4x+ 8 → 4x2 − 8x + 4 =

2x2 − 4x + 8 → 2x2 − 4x − 4 = 0 → x2 − 2x − 2 = 0. Using the quadratic formula, we find two roots at

1 ±
√

3. Since the derivative is an upward-sloping parabola, it switches from negative to postiive at the greater

root, indicating a relative minimum. Thus T (x) is minimized at x = 1 +
√

3, so the minimum amount of time is

T (1 +
√

3) = (3−
√

3)/
√

2 +
√

(1 +
√

3)2 − 2(1 +
√

3) + 4 = (3
√

2−
√

6)/2 +
√

6 =
3
√

2 +
√

6

2
.

20. If arctan(1/x) > x/(1 + x2) for all positive x, and they are both always greater than 0, then the total area bound

by them is just
∫∞
0

arctan(1/x) − x/(1 + x2)dx. We can simplify y = arctan(1/x) by considering tan(y) = 1/x, so

x = cot(y) = tan(π/2 − y). Therefore arctan(x) = π/2 − y, so y = π/2 − arctan(x). Then the integral becomes∫∞
0
π/2 − (arctan(x) + x/(1 + x2))dx. By inspection, arctan(x) + x/(1 + x2) is the product-rule derivative of

x arctan(x), so the entire integral is just π
2x−x arctan(x) = x(π2 − arctan(x))

∣∣∣∞
0

. The lower bound clearly evaluates

to 0, but the upper bound is indeterminate because x goes to infinity while π/2− arctan(x) goes to 0. To solve it,

we can express it as
π/2− arctan(x)

1/x
, which is still indeterminate (numerator and denominator both 0), then use

L’hopital’s rule. The derivative of the numerator is −1/(1 + x2), while the derivative of the denominator is −1/x2,

leading to a new fraction of x2

1+x2 . Ax x approaches infinity, this fraction clearly approaches 1 .

21. The series can be converted into 2
3! + 3

4! + 4
5! · · · =

3−1
3! + 4−1

4! + 5−1
5! · · · = ( 1

2! + 1
3! + 1

4! + . . . )− ( 1
3! + 1

4! + 1
5! + . . . ).

Then, using the well-known fact that e = 1+1+1/2+1/(3!)+1/(4!)+. . . , this becomes S = (e−2)−(e−5/2) =
1

2
.

22. Since the vertex is at the cake’s right angle, we can call that the origin and then the equation of the parabolic curve

is just y = nx2 for some value of n. The two parabolas intersect at nx2 = 4 − x2 → x = 2/
√
n+ 1. The total

area of the cake is
∫ 2

0
(4 − x2)dx = 4(2 − 0) − 1

3 (23 − 03) = 16
3 . Then we must have

∫ 2/
√
n+1

0
4 − (n + 1)x2dx =

8/
√
n+ 1− n+1

3

(
8

(n+1)3/2

)
= 16

3
√
n+1

= 8
3 , so n = 3 and the two parabolas intersect at (1, 3).

Then, to find the length of the cut we can use arc-length formula: L =
∫ 1

0

√
1 + (6x)2dx. Letting u = 6x, L =

1
6

∫ 6

0

√
1 + u2du. Next, we can use the trig substitution u = tan θ, transforming the integral from

∫ 6

0

√
1 + u2du =∫ arctan 6

0
sec3 θdθ. The sec3 θ integral can be evaluated easily with integration by parts with u = sec θ and dv = sec2 θ:

I = sec θ(tan θ) −
∫

sec θ tan θ(tan θ)dθ. That second integral becomes
∫

sec θ tan2 θdθ =
∫

sec3 θ − sec θdθ =

I+
∫

sec θdθ. Shifting the I to the left side, we get 2I = sec θ tan θ+
∫

sec θdθ. The integral of sec θ is quite common

and can be derived by multiplying by sec θ+tan θ
sec θ+tan θ as ln(sec θ + tan θ). Therefore I = sec θ tan θ+ln(sec θ+tan θ)

2 . Finally,

we can use a right triangle to see that the angle with tangent of 6 has a secant of
√

37, so when arctan(6) is plugged

in, and everything is divided by 6 then multiplied by 12, the final answer is 6
√

37 + ln(6 +
√

37)

23. Evaluating all these volumes is tedious with disk method, but Pappus’s theorem, which says that V = 2πAr

where r is the distance from the center of mass to the line of rotation, makes it much easier. All we have to
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do is find the COM and then rank the lines by their distance from the COM. The x-coordinate of the COM is

1
A

∫ 2

0
x(4−x2)dx = 1

A (2x2− 1
4x

4)
∣∣∣2
0

= 4/A = 3
4 where we used the fact that the cake’s area is 16/3 which was found

in the previous solution. Similarly, the y-coordinate of the COM is 1
A

∫ 4

0
y
√

4− ydy. To solve this integral, we set

u = 4− y to get 1
A

∫ 4

0
(4− u)

√
udu = 1

A ( 8
3u

3/2 − 2
5u

5/2)
∣∣∣4
0

= 8
5 .

Now we just find the distance from the COM, (3/4, 8/5), to each of the lines. The distance from x = 0 is 3/4, the

distance from y = 0 is 8/5, the distance from x = 4 is 13/4, and the distance from y = 5− x can be computed from

point-to-line formula: standard form is x+ y − 5 = 0, so we have d = |(3/4 + 8/5− 5)|/
√

2 = 53/(20
√

2). We know

that 26.5 < 20
√

2 < 30 because 1.325 <
√

2 < 1.5, so 53/30 < 53/(20/
√

2) < 53/26.5 and 1.6 < 53/(20/
√

2) < 2.

Combining this with the other values, it’s clear the ordering is D < P < F < M .

24. Using the area found in #22 and the COM found in #23, we can easily calculate the volume of the whole cake

as 2π(16/3)(3/4) = 8π. Now we are looking for the rectangular prism of maximum volume that can be inscribed

in this figure, with one face on the circular base. To do this, we can write an explicit equation for the shape,

which is easiest to do in cylindrical coordinates r (distance from origin along the circular base), θ (angle from

horizontal along the circular base), and z (height above circular base). Consider the point (r, θ). If we cut the cake

along the plane corresponding to θ, we form a cross-section that is just the parabola z = 4 − r2. Then at every

value of r, z = 4 − r2, independent of θ. So if one vertex of the rectangular base is at (r, θ), the volume of the

quarter-prism it forms is xyz = (r cos θ)(r sin θ)(4− r2) = 1
2 sin(2θ)(4r2 − r4). Treating θ and r independently, V is

maximized when sin(2θ) = 1, which only occurs when θ = π/4; V is also maximized when 4r2− r4 is maximized, so

8r−4r3 = 0→ r(2−r2) = 0. The derivative switches from positive to negative at r =
√

2, so that is the maximizing

value of r. Then we can find the total volume of the bite as 4xyz = 2 sin(2θ)(4r2 − r4) = 2(1)(4) = 8. The ratio of

this volume to the total volume of the cake is 8/8π =
1

π
.

25. Let the bug’s direction be characterized by a vector with angle θ from the horizontal. By symmetry, the probability

that the bug leaves the square when 0 < θ < π/2 is equal to the probability that it leaves the square for any θ.

Let X be the event that the bug does not escape from the square. P (X) =
∑

(0,π/2) P (X|θ) ∗ P (θ) by conditioning

over the angle. For a certain angle θ in (0, π/2), the probability that the bug travels at that angle is dθ
π/2 . In other

words, since the angle is continuous, we can replace the summation with an integral: P (X) = 2
π

∫ π/2
0

P (X|θ)dθ.

Given an angle θ, we must now find the total area of starting locations for which the bug does not leave the square

after traveling 1 m in that direction. The horizontal motion of the bug will be cos θ and the vertical motion will be

sin θ, so the bug can only stay within the square if it starts within a smaller rectangle of width 1− cos θ and height

1− sin θ (you can see this by diagramming it). Then the probability P (X|θ) is the ratio of the area of this rectangle

to the area of the unit square, or (1− cos θ)(1− sin θ) = sin θ cos θ− sin θ− cos θ+ 1. Plugging into the integral, we

get
∫ π/2
0

1
2 sin(2θ) − sin θ − cos θ + 1dθ = π−3

2 . Then we multiply back in the 2/π to get 1 − 3/π. However, this is

P (X), and we are looking for P (XC) = 1− P (X) =
3

π

26. The given statement by Relpek implies that A(a, a+ τ) is a function of τ . However, note that polar integration tells

6
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us that this area is

∫ a+τ

a

1

2
r(t)2d(θ(t)) =

∫ a+τ

a

1

2
(θ(t))4 · θ′(t)dt =

1

10
(θ(t))5

∣∣∣∣a+τ
a

=
1

10

(
(θ(a+ τ))5 − (θ(a))5

)
By setting a = 0, we get that 1

10

(
(θ(a+ τ))5 − (θ(a))5

)
= 1

10

(
(θ(τ))5 − (θ(0))5

)
for all a, τ . Define the function

g(r) = (θ(r))5 − (θ(0))5. The equation above now boils down to g(a + τ) = g(a) + g(τ). This means g is additive,

and since θ is differentiable, g is differentiable too. Cauchy showed that any additive continuous function must be

linear, meaning that g(a) = Ca for some constant C (since g(0) = g(0) + g(0) =⇒ g(0) = 0). This means that

θ(t) = 5
√
Ct+D for constants C,D. Now, it is a matter of using the remaining conditions to find C,D. Since

θ(0) = π, then D = π5. Now, note that

−2π2 = r′(0) = 2θ(0)θ′(0) = 2π · 1

5
(C · 0 + π5)−4/5 · C =

2π

5π4
· C =⇒ C = −5π5

This means that we want to find the smallest positive solution to θ(t) = 5
√
−5π5t+ π5 = π 5

√
1− 5t = π

2 , which

means 1− 5t = 1
32 =⇒ t =

31

160

27. First let u = x − a. This gives (ln 1000)1001
∫∞
0

u100

100u+a
du =

(ln 1000)1001

1000a
∫∞
0

u1000

eu ln 1000
du. Then letting v =

u ln 1000, we have
(ln 1000)1000

1000a
∫∞
0

(v/ ln 1000)1000e−vdv = 1000−a
∫∞
0
v1000e−vdv. This integral can be solved

through tabular integration with differentiating term v1000 and integrating term e−v. The series is −v1000e−v −

1000v999e−v − (1000)(999)v998e−v − · · · − (1000!)ve−v + (1000!)
∫∞
0
e−vdv. Plugging in bounds we see that all

but the final term go to 0 on both ends due to the v and e−v factors. Thus the entire integral evaluates to

−(1000!)(e−∞ − e0) = 1000!. Bringing back the outside factor we have (1000!)/(1000a). For this to be an integer,

1000a = 103a must be a factor of 1000!. To find the number of factors of 10 in 1000!, we must find the number of

factors of 5 (because there are far more factors of 2 than 5). To find the number of factors of 5 we add the number

of multiples of 5 less than 100 to the number of multiples of 25 to the number of multiples of 125 to the number of

multiples of 625: 1000/5 + 1000/25 + 1000/125 + 1 = 249. The largest a such that 3a is less than or equal to 249 is

simply 249/3 = 83 .

28. First let the radius of the circle be r and the length of the leash be l. Using the hint, we consider the wrapping of

Tanmay’s leash according to the point at which it contacts the circular pen. Consider only one half of the circle as

well (we will double at the end). First Tanmay can graze a quarter circle of radius l before the leash begins to collide

with the circle. Then, the contact point will begin to move along the quarter circle. Consider the angle θ between

the tying point, the circle’s center, and the contact point. If the contact point is at an angle θ then rθ meters of leash

have already been ”used up” in wrapping around the circle. While at that contact point, the remaining length of

the leash l− rθ rotates through a small angle dθ. The leash sweeps through a circular arc of radius l− rθ and angle

dθ, with an area of 1
2 (l− rθ)2dθ. But, since this occurs at all angles θ, all we have to do is integrate it from θ = 0 to

θ = π! (the leash extends exactly to θ = π because it is exactly half the circumference in length). So we integrate

1
2

∫ π
0

(l−rθ)2dθ = 1
2 (l2θ− lrθ2 + 1

3r
2θ3) = 1

2 (l2π− lrπ2 + 1
3r

2π3) = 1
2 (π3−π3 + 1

3π
3) = 1

6π
3. Then we add in the area

of the quarter circle to get 1
4π

3+ 1
6π

3 = 5
12π

3. Lastly, we double this to account for both sides of the pen, giving
5

6
π3 .

7



2021 James S. Rickards Fall Invitational Calculus Individual Solutions

29. First we use the substitution u = ex, which gives
∫ 2

1
eu/udu. This integral is impossible to solve analytically, but we

can try to bound it using Riemann sums. First off, we can take the derivative of eu/u = ueu−eu
u2 = (eu/u2)(u− 1),

which shows that the function is increasing over the entire interval (whenever u > 1). Since the function is increas-

ing, a right Riemann Sum will be an overestimate and a left Riemann sum will be an underestimate. However, we

cannot use too many subintervals because it is difficult to work with non-integer powers of e - instead we will only

use one rectangle for each. The right sum with one interval is just wh = 1(e2/2) ≈ (2.7)2/2 = 7.29/2 = 3.645. The

left sum with one interval is wh = 1(e) ≈ 2.72. Thus we can be sure that the integral is between 2.72 and 3.65,

narrowing the options down to either 3 or 4 as the closest integer. However, we can get better! Using a trapezoidal

sum with one interval, we get h(b1 + b2)/2 = 1(e + e2/2)/2 ≈ 1(2.72 + 3.65)/2 = (6.37)/2 = 3.19. This narrows

the range down to 2.72 to 3.19, so we can be sure the closest integer is 3 ! This problem can also be solved by

expanding into the Taylor series and taking the first terms, but it is a bit more tedious.

30. Looking back to the first question, we see that the Weierstrass substitution is u = tan(x/2). Back then we derived the

relations sin(x) = 2u
1+u2 and 2

1+u2 du = dx. Plugging these in, the integral simplifies to
∫ 1

0

4u

(1 + u)2(1 + u2)
du. We

can expand the integrand into partial fraction decomposition: 4u
(1+u)2(1+u2) = Au+B

u2+2u+1 + Cu+D
1+u2 . Cross-multiplying,

we can form 4 separate equations for each power of u.

u3: C +A = 0

u2: B + 2C +D = 0

u: A+ C + 2D = 4

1: B +D = 0

Recognizing from equations 1 and 4 that A = −C and B = −D, we can show that A = C = 0 from equation 2,

and thus that D = 2 and B = −2. Therefore the integral simplifies to
∫ 1

0

2

1 + u2
− 2

(1 + u)2
du. Using standard

integration techniques, this becomes 2 arctan(u) + 2/(1 + u)→ π

2
− 1 .
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